

PROFESSIONAL FIRE SAFETY TESTING

t: (02) 6111 2909 | ABN: 36 620 256 617 <u>mail@ignislabs.com.au</u> | <u>www.ignislabs.com.au</u> 3 Cooper Place, Queanbeyan, NSW 2620 PO Box 5174 Braddon ACT 2612

Australian Standard 3837 Method of test for heat and smoke release rates for materials and products using an oxygen consumption calorimeter

> NAVURBAN UV101 (DIAMOND FINISH)

PRODUCT EVALUATION AND TEST REPORT

IGNL-3250-07-02 I01R00

Tested: 18.11.2019 Issued: 21.01.2020

DOCUMENT REVISION HISTORY

00 D01 16.01.2020 Issued for internal review RP BHB 00 21.01.2020 Updated EJ FW	Issue	Revision	Date	Purpose of Issue	Prepared by	Reviewed by
00 21.01.2020 Updated EJ FW	01	00 D01	16.01.2020	Issued for internal review	RP	внв
	01	00	21.01.2020	Updated	EJ	FW
			21.01.2020	- F	-	

SPONSOR

New Age Veneers Pty Ltd Unit 14, 22-24 Beaumont Rd, Mt. Kuring-Gai, NSW 2080

Test Technicians

Darrel Laker Laboratory Technician

SIGNATORY

Auth d by

Chartered Professional Engineer CPEng, NER (Fire Safety / Mech) 2590091, CMEngNZ 1150772, RPEQ 11498, BPB-C10-1875, EF-39394 MFireSafety (UWS), BEng (UTS), GradDipBushFire (UWS), DipEngPrac (UTS), DipEng (CIT)

CONTACT INFORMATION and LOCATION OF TESTING

Ignis Labs Pty Ltd t: (02) 6111 2909 | ABN: 36 620 256 617 mail@ignislabs.com.au | www.ignislabs.com.au 3 Cooper Place, Queanbeyan, NSW 2620 PO Box 5174 Braddon ACT 2612

Copyright ©

All rights reserved. No part of the content of this document may be reproduced, published, transmitted or adapted in any form or by any means without the written permission of the Ignis Labs Pty Ltd.

Disclaimer

The information contained in this document is provided for the sole use of the recipient and no reliance should be placed on the information by any other person. In the event that the information is disclosed or furnished to any other person, Ignis Labs Pty Ltd accepts no liability for any loss or damage incurred by that person whatsoever as a result of using the information. Ram Prakash | MIEAust Laboratory Engineer

TABLE OF CONTENTS

1		4
	1.1 General	4
	1.2 Subject Test Specimens	4
	1.3 Sponsor	4
	1.4 Manufacturer	4
	1.5 Test Number	4
	1.6 Test date	4
2	TEST SUMMARY	5
3	TEST PLOTS	6
4	APPLCIATION OF TEST RESULTS	9
	4.1 Test Limitations	9
	4.2 Uncertainty of Measurement	9

1 INTRODUCTION

1.1 General

The purpose of this report is to document the test undertaken by Ignis Labs on the NAVURBAN UV 101 (Diamond Finish) decorative surface panels of New Age Veneers Pty Ltd. The testing was undertaken in accordance with AS/NZS 3837. The intent was to establish the safety of the material by determining its group number in accordance with requirements of AS 5637.1:2015.

1.2 Subject Test Specimens

A full test was undertaken, and the specimen characteristics are listed below.

- Specimen thickness (mm): 18.0 (Sp. 1), 18.4 (Sp. 2), 18.3 (Sp. 3)
- Specimen pre-test mass (g): 136.04 (Sp. 1), 134.58 (Sp. 2), 134.47 (Sp. 3)
- Specimen colour: Light brown

The specimens before the test are shown below:

FIGURE 1:

SPECIMENS

1.3 Sponsor

New Age Veneers Pty Ltd Unit 14, 22-24 Beaumont Rd, Mt. Kuring-Gai, NSW 2080

1.4 Manufacturer

The decorative wall lining material is manufactured by New Age Veneers Pty Ltd.

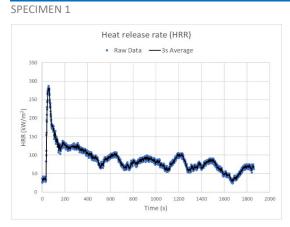
1.5 Test Number

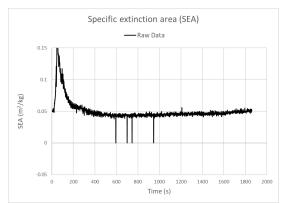
The Ignis Labs reference test number is **IGNL-3250-07-02**.

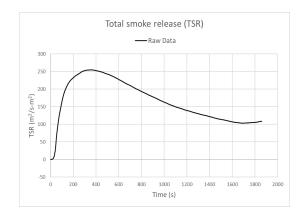
1.6 Test date

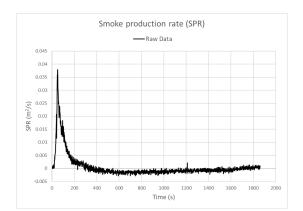
The test was conducted on 18 November 2019.

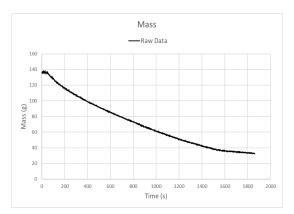
2 TEST SUMMARY

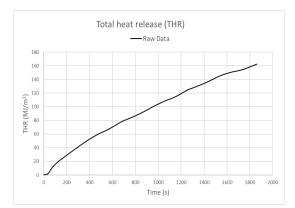

Test Heat Flux (kW/m²)	50.0								
			Sp 1	Sp 2	Sp 3	Sp 4	Sp 5	Sp 6	Mean
Thickness (mm)			18	18.4	18.31 -		-	-	18.23667
Surface Area (m²)	As		0.00884	0.00884	0.00884 -		-	-	0.00884
Mass before the Test (g)	mi		136.044		134.46533 -		-	-	135.0289
Mass after the Test (g)	m _f		32.39431		32.348367 -		-	-	31.49239
Time to Ignition (sec)	t _{ig}		39	31	36 -		-	-	35.33333
Test start time (sec)	t _{start}		0	0	0 -		-	-	C
Calculation									
Density (kg/m³)	ρ		854.9775	827.37373	830.74879 -		-	-	837.7
Irradiance (kW/m ²)	-		50.38	50.38	50.38 -		-	-	50.38
Exhaust System Flow Rate (m ³ /sec)			0.024	0.024	0.024 -		-	-	0.024
Mass Loss (kg/m²)			11.72508	11.860047	11.551693 -		-	-	11.71227
Average rate of Mass Loss per unit area (g/m ² .s)					7.3344081 -		-	-	6.682913
Total Mass Pyrolyzed (%)			76.18836	77.905278	75.942969 -		-	-	76.67887
Time to 50kW/m ² (sec)	t 50		33.1	30.7	30.8 -		-	-	31.5
Ignitability Index (1/min)	lig	60/(t ₅₀ -t _{start})	1.813	1.957	1.949 -		-	-	1.9
Test duration (sec)			1884	1896	1611 -		-	-	1797.0
Peak Rate of Heat Release (0-60s)			281.3945	242.81429	248.95598 -		-	-	257.7
Peak Rate of Heat Release (0-180s)			281.3945	242.81429	248.95598 -		-	-	257.7
Peak Rate of Heat Release (0-300s)			281.3945	242.81429	248.95598 -		-	-	257.7
Average Rate of Heat Release (0-60s)			229.9598	206.42081	205.52396 -		-	-	214.0
Average Rate of Heat Release (0-180s)			163.4426	154.25726	143.58109 -		-	-	153.8
Average Rate of Heat Release (0-300s)			146.3819	128.73711	130.50785 -		-	-	135.2
Total Heat Released (MJ/m ²)			164.3958	127.11086	132.14274 -		-	-	1 41.2
Average Effective Heat of Combustion (MJ/kg)	$\Delta h_{c,eff(avg)}$		14.01082	10.677707	11.429501 -		-	-	12.0
Average Specific Extinction Area (m ² /kg)	$\sigma_{f(avg)}$		95.50642	39.481218	83.994973 -		-	-	73.0
Rate of Heat Release Index (m=0.34)	I ₀₁		21944.47	17007 127	18599.306 -				19513.6
					1216.1453 -		-	-	1243.2
Rate of Heat Release Index (m=0.93)	I _{Q2}		1338.447	11/5.1328	1216.1453 -		-	-	1243.2
Integral Limit at 10 min	I _{Q, 10 min}	6800 - 540 I _{ig}	5820.929	5743.0023	5747.5093 -		-	-	5770.5
Integral Limit at 2 min	I _{Q, 2 min}	2475 - 165 l _{ig}	2175.84	2152.0285	2153.4056 -		-	-	2160.4
Integral Limit at 12 min	I _{Q, 12 min}	1650 - 165 I _{ig}	1350.84	1327.0285	1328.4056 -		-	-	1335.4
Result									
BCA Group Classification Prediction			3	3	3	-	-	-	

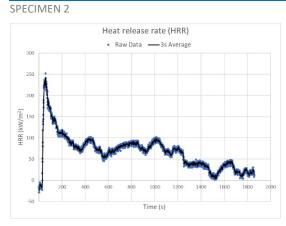


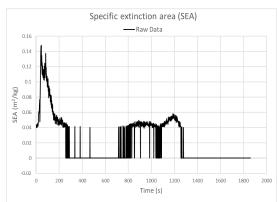


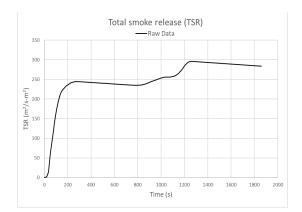

3 TEST PLOTS

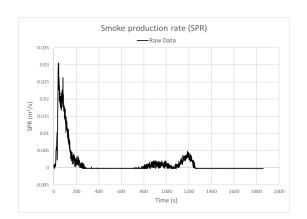

FIGURE 1:

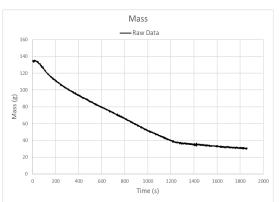


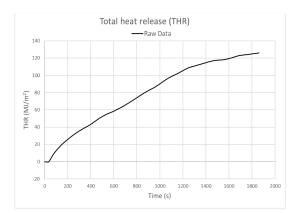


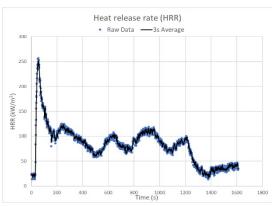


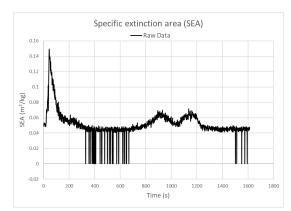


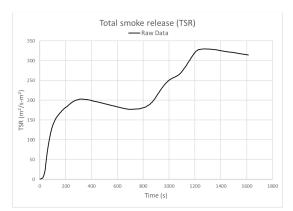


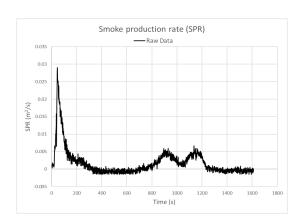

FIGURE 2:

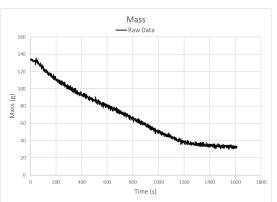


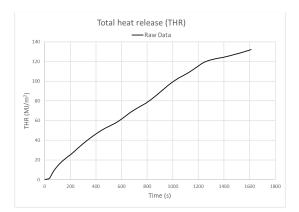







FIGURE 3:





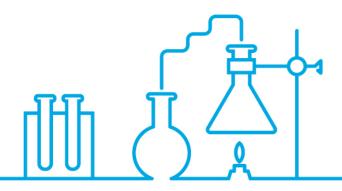
4 APPLCIATION OF TEST RESULTS

4.1 Test Limitations

The results of this fire test may be used to directly assess fire hazard, but it should be recognised that a single test method will not provide a full assessment of fire hazard under all fire conditions. The results reported herein shall not be exclusively used to derive a Group Number in accordance with the NCC without undertaking validation of the performance that is predicted.

4.2 Uncertainty of Measurement

Because of the nature of fire hazard property testing and the consequent difficulty in quantifying the uncertainty of measurement of fire hazard properties, it is not possible to provide a stated degree of accuracy of the result.


Page 10 of 10

--- END OF REPORT ---

THIS PAGE INTENTIONALLY LEFT BLANK

Ignis Labs Pty Ltd

Laboratory reference No: IGNL-3250-07-02 T: (02) 6111 2909 www.ignislabs.com.au mail@ignislabs.com.au 3 Cooper Place Queanbeyan East NSW 2620 PO Box 5174 Braddon ACT 2612 ABN: 36 620 256 617

